356 research outputs found

    Heterokairy: a significant form of developmental plasticity?

    Get PDF
    There is a current surge of research interest in the potential role of developmental plasticity in adaptation and evolution. Here we make a case that some of this research effort should explore the adaptive significance of heterokairy, a specific type of plasticity that describes environmentally driven, altered timing of development within a species. This emphasis seems warranted given the pervasive occurrence of heterochrony, altered developmental timing between species, in evolution. We briefly review studies investigating heterochrony within an adaptive context across animal taxa, including examples that explore links between heterokairy and heterochrony. We then outline how sequence heterokairy could be included within the research agenda for developmental plasticity. We suggest that the study of heterokairy may be particularly pertinent in (i) determining the importance of non-adaptive plasticity, and (ii) embedding concepts from comparative embryology such as developmental modularity and disassociation within a developmental plasticity framework

    Ring distributions leading to species formation: a global topographic analysis of geographic barriers associated with ring species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the mid 20<sup>th </sup>century, Ernst Mayr and Theodosius Dobzhansky championed the significance of circular overlaps or ring species as the perfect demonstration of speciation, yet in the over 50 years since, only a handful of such taxa are known. We developed a topographic model to evaluate whether the geographic barriers that favor processes leading to ring species are common or rare, and to predict where other candidate ring barriers might be found.</p> <p>Results</p> <p>Of the 952,147 geographic barriers identified on the planet, only about 1% are topographically similar to barriers associated with known ring taxa, with most of the likely candidates occurring in under-studied parts of the world (for example, marine environments, tropical latitudes). Predicted barriers separate into two distinct categories: (i) single cohesive barriers (< 50,000 km<sup>2</sup>), associated with taxa that differentiate at smaller spatial scales (salamander: <it>Ensatina eschscholtzii</it>; tree: <it>Acacia karroo</it>); and (ii) composite barriers - formed by groups of barriers (each 184,000 to 1.7 million km<sup>2</sup>) in close geographic proximity (totaling 1.9 to 2.3 million km<sup>2</sup>) - associated with taxa that differentiate at larger spatial scales (birds: <it>Phylloscopus trochiloide</it>s and <it>Larus </it>(sp. <it>argentatus </it>and <it>fuscus</it>)). When evaluated globally, we find a large number of cohesive barriers that are topographically similar to those associated with known ring taxa. Yet, compared to cohesive barriers, an order of magnitude fewer composite barriers are similar to those that favor ring divergence in species with higher dispersal.</p> <p>Conclusions</p> <p>While these findings confirm that the topographic conditions that favor evolutionary processes leading to ring speciation are, in fact, rare, they also suggest that many understudied natural systems could provide valuable demonstrations of continuous divergence towards the formation of new species. Distinct advantages of the model are that it (i) requires no <it>a priori </it>information on the relative importance of features that define barriers, (ii) can be replicated using any kind of continuously distributed environmental variable, and (iii) generates spatially explicit hypotheses of geographic species formation. The methods developed here - combined with study of the geographical ecology and genetics of taxa in their environments - should enable recognition of ring species phenomena throughout the world.</p

    In Search of Critically Endangered Species: The Current Situation of Two Tiny Salamander Species in the Neotropical Mountains of Mexico

    Get PDF
    Worldwide, one in every three species of amphibian is endangered, 39 species have gone extinct in the last 500 years and another 130 species are suspected to have gone extinct in recent decades. Of the amphibians, salamanders have the highest portion of their species in one of the risk categories, even higher than the frogs. To date there have been few studies that have used recent field data to examine the status of populations of endangered salamanders. In this study we evaluate the current situation of two tiny salamanders, Parvimolge townsendi and Thorius pennatulus, both of which are distributed at intermediate elevations in the mountains of the northern Neotropics and are considered to be critically endangered; the first has been proposed as possibly extinct. By carrying out exhaustive surveys in both historical and potentially suitable sites for these two species, we evaluated their abundance and the characteristics of their habitats, and we estimated their potential geographic distribution. We visited 22 sites, investing 672 person-hours of sampling effort in the surveys, and found 201 P. townsendi salamanders in 11 sites and only 13 T. pennatulus salamanders in 5 sites. Both species were preferentially found in cloud forest fragments that were well conserved or only moderately transformed, and some of the salamanders were found in shade coffee plantations. The potential distribution area of both species is markedly fragmented and we estimate that it has decreased by more than 48%. The results of this study highlight the importance of carrying out exhaustive, systematic field surveys to obtain accurate information about the current situation of critically endangered species, and help us better understand the crisis that amphibians are facing worldwide

    An orphan gene is necessary for preaxial digit formation during salamander limb development

    Get PDF
    Limb development in salamanders differs from other tetrapods in that the first digits to form are the two most anterior (preaxial dominance). This has been proposed as a salamander novelty and its mechanistic basis is unknown. Salamanders are the only adult tetrapods able to regenerate the limb, and the contribution of preaxial dominance to limb regeneration is unclear. Here we show that during early outgrowth of the limb bud, a small cohort of cells express the orphan gene Prod1 together with Bmp2, a critical player in digit condensation in amniotes. Disruption of Prod1 with a gene-editing nuclease abrogates these cells, and blocks formation of the radius and ulna, and outgrowth of the anterior digits. Preaxial dominance is a notable feature of limb regeneration in the larval newt, but this changes abruptly after metamorphosis so that the formation of anterior and posterior digits occurs together within the autopodium resembling an amniote-like pattern

    Asymmetric reproductive isolation between terminal forms of the salamander ring species Ensatina eschscholtzii revealed by fine-scale genetic analysis of a hybrid zone

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ring species, exemplified by salamanders of the <it>Ensatina eschscholtzii </it>complex, represent a special window into the speciation process because they allow the history of species formation to be traced back in time through the geographically differentiated forms connecting the two terminal forms of the ring. Of particular interest is the nature and extent of reproductive isolation between the geographically terminal forms, in this case <it>E. e. eschscholtzii </it>and <it>E. e. klauberi</it>. Previous studies have documented infrequent hybridization at the end of the ring. Here, we report the first fine-scale genetic analysis of a hybrid zone between the terminal forms in southern California using individual-based Bayesian analyses of multilocus genetic data to estimate levels and direction of hybridization and maximum-likelihood analysis of linkage disequilibrium and cline shape to make inferences about migration and selection in the hybrid zone.</p> <p>Results</p> <p>The center of the hybrid zone has a high proportion of hybrids, about half of which were classified as F1s. Clines are narrow with respect to dispersal, and there are significant deviations from Hardy-Weinberg equilibrium as well as nonrandom associations (linkage disequilibria) between alleles characteristic of each parental type. There is cytonuclear discordance, both in terms of introgression and the geographic position of mitochondrial versus nuclear clines. Genetic disequilibrium is concentrated on the <it>eschscholtzii </it>side of the zone. Nearly all hybrids possess <it>klauberi </it>mtDNA, indicating that most hybrids are formed from female <it>klauberi </it>mating with male <it>eschscholtzii </it>or male hybrids (but not vice versa).</p> <p>Conclusions</p> <p>Our results are consistent with a tension zone trapped at an ecotone, with gene combinations characteristic of <it>klauberi </it>showing up on the <it>eschscholtzii </it>side of the zone due to asymmetric hybridization. We suggest that the observed asymmetry is best explained by increased discriminatory power of <it>eschscholtzii </it>females, or asymmetric postzygotic isolation. The relatively high frequency of hybrids, particularly F1s, contrasts with other contacts between the terminal forms, and with other contacts between other divergent <it>Ensatina </it>lineages, highlighting the diverse outcomes of secondary contact within a single species complex.</p

    Degeneracy: a link between evolvability, robustness and complexity in biological systems

    Get PDF
    A full accounting of biological robustness remains elusive; both in terms of the mechanisms by which robustness is achieved and the forces that have caused robustness to grow over evolutionary time. Although its importance to topics such as ecosystem services and resilience is well recognized, the broader relationship between robustness and evolution is only starting to be fully appreciated. A renewed interest in this relationship has been prompted by evidence that mutational robustness can play a positive role in the discovery of adaptive innovations (evolvability) and evidence of an intimate relationship between robustness and complexity in biology. This paper offers a new perspective on the mechanics of evolution and the origins of complexity, robustness, and evolvability. Here we explore the hypothesis that degeneracy, a partial overlap in the functioning of multi-functional components, plays a central role in the evolution and robustness of complex forms. In support of this hypothesis, we present evidence that degeneracy is a fundamental source of robustness, it is intimately tied to multi-scaled complexity, and it establishes conditions that are necessary for system evolvability

    Reacquisition of the lower temporal bar in sexually dimorphic fossil lizards provides a rare case of convergent evolution

    Get PDF
    Temporal fenestration has long been considered a key character to understand relationships amongst reptiles. In particular, the absence of the lower temporal bar (LTB) is considered one of the defining features of squamates (lizards and snakes). In a re-assessment of the borioteiioid lizard Polyglyphanodon sternbergi (Cretaceous, North America), we detected a heretofore unrecognized ontogenetic series, sexual dimorphism (a rare instance for Mesozoic reptiles), and a complete LTB, a feature only recently recognized for another borioteiioid, Tianyusaurus zhengi (Cretaceous, China). A new phylogenetic analysis (with updates on a quarter of the scorings for P. sternbergi) indicates not only that the LTB was reacquired in squamates, but it happened independently at least twice. An analysis of the functional significance of the LTB using proxies indicates that, unlike for T. zhengi, this structure had no apparent functional advantage in P. sternbergi, and it is better explained as the result of structural constraint release. The observed canalization against a LTB in squamates was broken at some point in the evolution of borioteiioids, whereas never re-occuring in other squamate lineages. This case of convergent evolution involves a mix of both adaptationist and structuralist causes, which is unusual for both living and extinct vertebrates

    Initiating and continuing participation in citizen science for natural history

    Get PDF
    Background: Natural history has a long tradition in the UK, dating back to before Charles Darwin. Developing from a principally amateur pursuit, natural history continues to attract both amateur and professional involvement. Within the context of citizen science and public engagement, we examine the motivations behind citizen participation in the national survey activities of the Open Air Laboratories (OPAL) programme, looking at: people’s experiences of the surveys as ‘project-baed leisure’; their motivations for taking part and barriers to continued participation; where they feature on our continuum of engagement; and whether participation in an OPAL survey facilitated their movement between categories along this continuum. The paper focuses on a less-expected but very significant outcome regarding the participation of already-engaged amateur naturalists in citizen science. Methods: The paper draws upon research conducted by the authors (a sociologist of science and a cultural geographer) over a five-year period, who followed the development and implementation of the OPAL surveys. The authors engaged with members of the public and natural history enthusiasts to understand how and why people engaged with the OPAL surveys, seeking to explore the motivations and barriers they faced to any further engagement with natural history. This involved carrying out interviews and focus groups with willing participants. Results: Our main findings relate to: first, how committed amateur naturalists (already-engaged) have also enjoyed contributing to OPAL and the need to respect and work with their interest to encourage broader and deeper involvement; and second, how new (previously-unengaged) and relatively new participants (casually-engaged) have gained confidence, renewed their interests, refocussed their activities and/or gained validation from participation in OPAL. Overall, we argue that engagement with and enthusiasm for the scientific process is a motivation shared by citizens who, prior to participating in the OPAL surveys, were previously-unengaged, casually-engaged or already-engaged in natural history activities. Conclusions: Citizen science has largely been written about by professional scientists for professional scientists interested in developing a project of their own. This study offers a qualitative example of how citizen science can be meaningful to participants beyond what might appear to be a public engagement data collection exercise
    • 

    corecore